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Abstract 

We consider the following four problems for a set S of k points on a plane, equipped 
with the rectilinear metric and containing a set R of n disjoint rectangular obstacles (so 
that distance is measured by a shortest rectilinear path avoiding obstacles in R): (a) find 
a closest pair of points in S, (b) find a nearest neighbor for each point in S, (c) compute 
the rectilinear Voronoi diagram of S, and (d) compute a rectilinear minimal spanning tree 
of S. We describe 0((n + k) log(n + k)) time sequential algorithms for (a) and (b) based on 
plane-sweep, and the consideration of geometrically special types of shortest paths, so-called 
z-first paths. For (c) we present an 0((n + k) log(n + k) log n) time sequential algorithm 
that implements a sophisticated divide-and-con quer scheme with an added extension phase. 
In the extension phase of this scheme we introduce novel geometric structures, in particular 
so-called z-diagrams, and techniques associated with the Voronoi diagram. Problem (d) can 
be reduced to (c) and solved in 0((n + k) log(n + k) log n) time as well. All our algorithms 

are near-optimal, as well as easy to implement. 

Keywords: Computational geometry, rectilinear metric, obstacles, nearest neighbors, Voronoi diagram, min- 

imal spanning tree. 

1    Introduction 

A fundamental problem in computational geometry is, given a geometric space G equipped with 

some metric d, that of computing shortest paths in G. This leads to several proximity problems 

when one is, in addition, given a finite subset S of G. 
We consider the case when G is the Cartesian plane, together with an obstacle set R consisting 

of n disjoint isothetic rectangles (i.e., with sides parallel to the coordinate axes), and the metric 

d (often called the rectilinear or Manhattan metric) is defined such that, ifp,q€ G, then d(p,q) 

is the Euclidean length of a shortest rectilinear path (i.e., consisting of axes-parallel segments) 

joining p and q that does not intersect the interior of any of the rectangular obstacles in R. Such 

geometric spaces arises naturally in applications such as VLSI chip design, plant and facility 

*An extended abstract appeared in Proc. 13th Con}, on the Foundations of Software Tech. and Th. Comp. Sc, 
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layout, robot motion planning, and urban transportation. These spaces, as well as various 

generalizations, have been investigated extensively for efficient sequential [5, 6, 11,13, 14, 18, 19] 

and parallel [2, 8] algorithms to compute shortest paths. 
The problems considered in this paper are, given a plane G, containing an obstacle set R of 

n rectangles and equipped with a metric d, as described above, and, further, a set S of k points 

in G - Ur6ß r, to 
(a) find a closest pair of points in S, 

(b) find a nearest neighbor for each point in 5, 
(c) compute the Voronoi diagram of S, and 

(d) compute a minimal spanning tree of S. 
We give near-optimal sequential algorithms for all four problems (in fact, each algorithm 

may be sub-optimal by at most a logarithmic factor), thus resolving questions open since at 
least 1985 when de Rezende, Lee, and Wu [6] gave optimal algorithms to find shortest paths in 

such a space. 
Section 2 introduces some terminology and preliminary results, as well as the notion of so- 

called z-first paths (where z is one of the four directions, ±x and ±y), which are shortest paths 

of a special geometric type. 
In Section 3, we describe an 0((n + k) log(n + k)) time algorithm that finds a closest pair in 

S after sweeping the plane in the +x and +y directions to determine shortest a;-first and y-frrst 

paths. 
Section 4 describes a similar algorithm with the same time bound to find all nearest neighbors 

in S, but in this case the plane is swept in all four directions, ±x and ±y. 
In Section 5, we describe the more complicated algorithm to compute the Voronoi diagram of 

S. Our algorithm runs in 0((n + k) log(n + k) logn) time, which is quicker, but not significantly 
so, than the next best Voronoi diagram algorithm that we are aware of for a similar geometric 
space: the algorithm of Mitchell [14, see Theorem 2] which runs in 0({n + fc)log2(n + k)) time. 
However, what may be of more interest is that, while Mitchell's algorithm uses a "continuous 
Dijkstra" method of propagating a "wavefront"' from each point of S as a source, ours is quite 
different and based on a divide-and-conquer with an "extension phase". It should be pointed 
out though that Mitchell's method allows the more general class of simple polygons as obstacles, 
while it is not clear if our methods can be extended beyond the class of rectangular obstacles. 

Considering another geometric space with obstacles, Aronov [1] achieves a time bound iden- 
tical to ours for computing the Euclidean Voronoi diagram of k points in an n-sided simple 
polygon. His overall scheme is also divide-and-conquer with an extension phase but, our space 
being dissimilar, we differ significantly in the implementation of the scheme and, in fact, intro- 
duce new geometric structures and methods. In particular, we exploit the special geometry of 

the rectilinear plane to implement the crucial extension phase in two stages: in the first stage 
we compute "approximate" Voronoi extensions, so-called ^-diagrams (where z is one of the four 
directions, ±x and ±y), and then, in the next stage, use these approximations to sweep through T 
while tracing out the boundaries of the "exact" Voronoi cells. y 

In Section 6, we discuss the reduction of the problem of computing a minimal spanning tree Q 

of S to that of computing the Voronoi diagram of S. This leads to an 0((n + k) log(n + k) log n) Q 

time algorithm to compute a minimal spanning tree, implying almost linear order speed-up over          
the minimal spanning tree algorithm of Wu, Widmayer, Schlag, and Wong [18] (which runs in 
0{k\ogk + n2logn) time, but allows the more general class of rectilinear convex polygons as        

obstacles). 
We conclude in Section 7 with a discussion of the near-optimality of all our algorithms and 

related open questions. 
Throughout, we avoid repeating proofs that have appeared in the available literature. 
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Figure 1: The shaded rectangles comprise a horizontal blockage between s and q; P is the x-first 

path, from p to q. 

2    Preliminaries 

We shall henceforth assume that all paths are rectilinear and avoid intersecting the interiors of 
rectangles in R. A path in G from a point p to a point q that is monotone in the x direction is 
called an x-path, a path monotone in both x and y directions is called an xy-path, and similarly 
denote paths monotone in other directions (-£, —y, etc.). 

A horizontal blockage, if one exists, between a pair of points s and q is a subset of rectangles 
of R dispositioned as indicated in Figure 1 (in which case, we also say s is horizontally blocked 
from q). More precisely (following [6]): 

Assume s = (sx,sy) and q = (qx,qy) and, without loss of generality, that sx < qx and 
sy < qy. For a rectangle r £ R, let minx{r) and maxx{r) denote the smaller and larger of the 
a;-coordinates of the vertical edges of r, respectively. Similarly, define miny(r) and maxy{r). 

Given a sequence H = {ri_,r2, ■. .,rh} of rectangles of R, we say that H is a horizontal 

blockage from s to q if 

1. 5j, < miny(ri), 

2. maxy(ri) < miny(ri+i) Vi = 1,2,..., h - 1, 

3. maxy(rh) < qy, 

4. maxx(ri) > sx > minx(ri), 

5. maxx(ri) > minx(ri+i) Vi = 1,2,..., h - 1, and 

6. maxx(rh) > qx > minx(rh)- 

Similarly define vertical blockage. We refer to [6] for a proof of the following: 

Proposition 1 ([6]) Between two points p and q there cannot be both a horizontal as well as 
a vertical blockage (there may be neither). If there is no horizontal blockage and p is left of q 
(i.e., the x-coordinate of p < the x-coordinate of q), then any shortest path from p to q is an 



x-path. If there is no horizontal blockage and p is right of q, then any shortest path from p to q 

is a (-x)-path. 
Similar results hold if there is no vertical blockage. a 

Shortest paths joining two points are never unique (except in the trivial case when the 
shortest path consists of only one segment), but in the following proposition we introduce and 
define a special type of shortest paths, z-first paths, with a geometric property that almost 

always makes them unique: 

Proposition 2 If there is no horizontal blockage between p and q and p is left of q, then there is 

at least one shortest x-path from p to q, call such an x-first path from p to q, that always proceeds 
in the x direction unless it would either enter inside a rectangle, or enter a region between each 
point of which and q there does not exist an x-path (i.e., each point of that region is either 

horizontally blocked from q or lies to the right of q). Thus, the x-first path from p to q makes 
a turn in a ±y direction only when it either hits a rectangle, or "risks" loosing x-monotonicity. 

See Figure 1. 
Similar results hold if p is right of q, or if there is no vertical blockage. In particular, we 

have similar definitions for z-first paths, where z = -x or ±y. 

Proof. A precise iterative procedure for drawing an x-first path from p to q is as follows: 
Say the source p = (px,Py) and destination q = {qx,qy)- Draw the path from p in the x 

direction until (whichever comes first) 

1. it hits, at point c, the left edge of some rectangle, or 

2. it reaches a point d = (a,py) such that, for sufficiently small e > 0, (a+e,py) is horizontally 

blocked from q, or 

3. it reaches the point e = (qx,py). 

In case 1, say the corners of the edge on which c lies are a and b. Draw the path vertically 
from c to a if d(c, a) + d(a, q) < d(c, b) + d(b, q), or to b if d(c, a) + d(a, q) > d(c, b) + d(b, q), or, 
arbitrarily, to either a or b if d(c, a) + d(a, q) = d(c, b) + d(b, q) (this is exactly the case when 
the x-first path is not unique). See Figure 1. Repeat the drawing procedure with the current 

endpoint (either a or b) of the path as the new source. 
In case 2, let the rectangle r, from a horizontal blockage between (a + e,py) and q, be the 

one that is vertically adjacent to (a + e,py), for sufficiently small e > 0. Then, clearly, the left 
edge of r has corners a and b with ^-coordinate equal to a. Draw the path vertically from d 
to the more distant of a and b. See Figure 1. Repeat the drawing procedure with the current 

endpoint (either a or b) of the path as the new source. 
In case 3, draw the path vertically from e to q. This is possible as, by case 2, we never reach 

a point that is horizontally blocked from q. See Figure 1. Exit. 
Clearly, this procedure completes, after a finite number of turns, an x-path P from p to q. 

It remains to show that P, which we call the x-first path from p to q, is indeed shortest. We 
shall prove this by induction on the number of segments of P. 

Starting the induction is trivial. Assume inductively then that P has ra(> 1) segments, and 

that all x-first paths with no more than n - 1 segments are shortest. If possible let Q be a path 
from p to q that is shorter than P. Then P and Q are disposed as in either Figure 2(a) or 2(b) 
(we may assume without loss that they do not intersect). 

Assume first that they are disposed as in Figure 2(a). Let m be the other end of the first 
segment of P leaving p (this segment is depicted as horizontal in Figure 2, but it may as well be 
vertical). From m draw the xy-path R with y-preferred (i.e., the path which, whenever it can 



(a) (b) 

Figure 2: Illustration for the proof of Proposition 2. 

go in either the x or y direction without intersecting the interior of a rectangle, chooses the y 
direction, see [6]). As m is not horizontally blocked from q, R intersects Q at some interior point 
n. Denoting, for example, the distance along P from p to q by \P(p, q)\,we have by assumption 

\Q(p,q)\   <   \P(p,q)\ 
=>\Q(p,n)\ + \Q(n,q)\    <    \P{p,m)\ + \P(m,q)\ (1) 

As P(p, m) U R(m, n) is an xt/-path, it is a shortest path from p to n, so that 

|P(p,m)| + |E(m,n)|    <    |Q(p,n)| (2) 

From (1) and (2) we have 

\P(p,m)\ + \R(m,n)\ + \Q(n,q)\    <    \P{p,m)\ +\P(m,q)\ 

=>\R(m,n)\ + \Q(n,q)\    <    \P(m,q)\, 

contradicting the inductive hypothesis as P(m, q) is an z-first path with n - 1 segments, and 
proving Q cannot exist. If P and Q are disposed as in Figure 2(b), an exactly similar argument 
holds after drawing R from m as the zy-path with (-^-preferred. □ 

Comment. The notion of, for example, x-preferred paths in [6] is different from ours of z-first 
paths in that it does not characterize shortest paths between given pairs of points. 

The following separator result can be proved following [2] (where, in fact, an n-processor 
logn-time PRAM algorithm is given) with straightforward modifications, also see Figure 3: 

Proposition 3 ([2]) In 0(n\ogn) time one can describe an x(-y)-path P (after re-orienting 
the coordinate axes if necessary), comprising 0(n) segments and unbounded in both directions 
with the first and last segments being vertical (P is imagined to start from a point at infinity in 
the y direction), such that there are at least |n rectangles of R on either side of P. □ 

3    Finding a Closest Pair 

It is worth noting at the outset that the Bentley-Shamos [3] divide-and-conquer scheme cannot 
be directly applied, as it is no longer true that a "circle" of radius r in the d-metric around a 



Figure 3: P is a separator as in Proposition 3. 

P* 

Figure 4: Each unlabeled point is at distance less than r from p, but at distance greater than r 

from each other. 



point p can contain at most 0(1) points each of which is at distance at least r from the other. 
See Figure 4. Instead, we exploit properties of the rectilinear metric for a very different method 
based on plane-sweep. Our idea is, while sweeping in the x direction for instance, to gather 
information about shortest z-first paths. It should be pointed out that the algorithm in [6] for 
the single-source shortest path problem in a similar setting uses plane-sweep as well, though, for 
our purposes, we need to maintain considerably more information and data structures through 
the sweep. 

Let C\ denote the set of corners on the left edges of rectangles of R. Further, as a simplifying 
device, add to S a new point (-oo,0) (we shall, in fact, assume (-oo,0) to be a finite point 
sufficiently far left of any existing member of S U C{). 

Suppose Lx is a vertical sweep-line that begins to scan in the x direction starting from a 
position just right of (-oo,0). Maintain the status of Lx in a height-balanced search tree (e.g., 
a red-black tree) Tx, such that, if at time t the sweep-line lies on Lx{t), the status tree at that 
instant, denoted Tx(t), represents an increasing set of points {-oo = a0, ax,..., a(t = oo} on 
Lx{t) {Lx{t) is, of course, imagined to be a copy of the real line by a projection of the y axis), 
together with a label Bi for each point a,-, 1 < i < It, such that 

1. For each i, either £,- is of the form (p, c), where p £ S and c G S U C/, both p and c lying 
left of Lx(t); or, Bi is of the form r, where r £ R. 

2. If Bi = (p, c) then, for each point q in the open interval (o^_i, a,-) on Lx(t), p is the closest 
to q of the points of S from which there is an x-path to q (clearly, all such points must lie 
left of Lx(t), and (-oo, 0) is one such); further, there is a unique z-first path, say P, from 
p to q, and the last point of S U C\ at which P turns as it moves from p to q is c (counting 
p itself as the first and possibly only such turn point). Call c the x-anchor of q w.r.t. p. 

3. If Bi = r then either (a,-_i, a,) is the left edge of r (minus endpoints) or lies in the interior 
of r. 

4. The sorted set {a0, ax,..., alt} is minimal with respect to the labeling, i.e. no two adjacent 
a,i share the same label. 

See Figure 5 . We shall often refer to an open interval as being associated with the same label 
as its right endpoint. Initially, of course, Tx(0) contains only the points -oo and oo, with the 
point oo having label ((—oo,0),(—oo,0)). 

In addition to the status tree Tx, maintain an array D, indexed by S U C/, such that, at time 

*. 

• if q is left of Lx(t) (i.e., if Lx has already swept over q), the entry D[q] contains the name 
of the point which is closest to q amongst points of S, different from q, from which there 
is an rr-path to q, as well as the distance of that point from q, and 

• if Lx(t) is strictly left of q, then D[q] = oo, denoting 'no information available' (as a special 
case, mark £>[(—oo,0)] = oo throughout). 

As Lx moves rightwards the following three types of events occur at various times: 

1. Lx(t) touches a point of S, called a point event. 

2. Lx(t) touches the left side of a rectangle, called a left event. 

3. Lx(t) touches the right side of a rectangle, called a right event. 
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Figure 5: The status of the sweep line is shown at five positions: (a) just before the point event 
at p5, (b) after updating for the point event at ps, (c) after updating for the point event at pe, 
(d) after updating for the left event at the left edge of r7, and (e) after updating for the right 
event at the right edge of r7. The solid circles are the points p,- of S, the hollow circles are points 
of the status tree, the r; are the rectangles, and the c,- are corners on the left edges of rectangles. 
The labels are shown next to the intervals, and label b = ((-oo,0),c2). 



We assume, for simplicity, that no two events happen at the same time (i.e., points of S and 
vertical edges of rectangles of R all have distinct x-coordinates). Removing this restriction is a 
minor technicality. Sort the points of S and the vertical edges of rectangles of R by ^-coordinate, 
in 0((n + k)log(n + k)) time, to obtain the schedule of events. The following is not hard to 
prove: 

Lemma 1 Tx(t) does not change between successive events. 

Proof. Follows by elementary geometric arguments, given the rectilinearity of the metric.       a 

Next, we describe the procedures to update D and Tx at each type of event. 

Point event: At a point event at time t, Lx(t) touches a point of S, say q. Assume the previous 
event took place at time t'. 

By searching Tx(t') locate q (or, more accurately, its y-coordinate) in the array o0,.. .,a/t,. 
Say a,-_i < q < a,-. 

If the label St- = (p, c) (it cannot be an r € R), then p is a nearest one to q (we have a choice 
when q = a,-) amongst points of S, different from q, from which there is an x-path to q; and c 
is the x-anchor of q w.r.t. p. Further, the distance along a shortest x-path from p to q can be 
determined as the sum of the distance of c from p (which can be read from array D), the length 
of the perpendicular from c to Lx(t), and the distance of q from the base c of this perpendicular 
(which lies in (a,-_i,a;))- In fact> the function d,- : [a,-_i,a;] -> U, the reals, giving distances of 
points from p along x-paths, attains a minimum at c and linearly increases with gradient one 
on either side of that base. 

Updating D: Update the entry D[q] with the name of p and its distance from q. 
Updating Tx: To update Tx(t'), a new interval with label (q, q) must be created that contains 

q and extends on either side of q to contain points of Lx(t) that are now closer to q than they 
are to points of S strictly left of Lx(t), considering, of course, only distances measured along 
x-paths. Determining the extent of this new interval is straight-forward: simply proceed in 
either direction from q along Lx(t) comparing the distance from q to the distance from the 
currently known nearest point of S (as given by the distance function dj of the interval one is 
currently inside), and stopping only if the two distances become equal or the side of a rectangle 
of R is reached. This will, of course, result in the partial or full deletion of some vertices of 
Tx(t'). Updating Tx{t') consists, therefore, of inserting the two endpoints of the new interval 
and deleting old vertices that he inside the new interval. The upper endpoint of the new interval 
will have label (q,q), while the lower endpoint will have the label of the interval of Tx(t') in 
which it lies. 

See Figure 5. 
Left event: At a left event at time t, Lx(t) touches the left side, say [rx,r2], of some rectangle 
r € R, and we imagine r to become active as an obstacle intersecting Lx(t). 

Updating D: Update D[rx] and D[r2] by searching Tx(t') to locate rt and r2 in a0,. • -,a;t,, 
and performing appropriate distance computations. 

Updating Tx: Updating Tx{if) consists firstly of inserting rx and r2 as new vertices, and then 
deleting all vertices that he in [ri,^]. 

Label r2 with r. 
If the label of the vertex following r2 is (p, c) such that the base of the perpendicular from c 

to Lx(t) lies below r2, then relabel this vertex with (p, r2). 
If ri lies in an interval of Tx(t') with label (p1, c'), then label n with (p1, d) or (p', n) according 

as the base of the perpendicular from c' to Lx(t) lies below or above r\. 
See Figure 5. 



Right event: At a right event at time t, Lx(t) touches the right side, say [r3,r4], of some 
rectangle r G R-, and we imagine that r ceases to be active as an obstacle intersecting Lx(t). If 
the left side of r is [r^,r2], then rx = r3 and r2 = r4 (of course, identifying points with their 

projections on the y axis), so that r3 and r4 already belong to Tx{t') (as they were inserted at 
the left event when Lx touched the left side of r and, clearly, could not have been removed by 

any intermediate events). 
Updating D: Delete r3 and r4 from Tx(t'), and assume the labels of the intervals just below 

r3 and just above r4 in Lx[t') are (p,c) and (p',c'), respectively. 
Updating Tx: Three cases may arise according as: 
(i) r4 is closer to p then p'\ Extend the upper endpoint of the interval just below r3 to at 

least r4, and then proceed to extend it further upwards exactly as in the manner for a point 

event. 
(ii) r3 is closer to p' then p: Extend the lower endpoint of the interval just above r4 to at 

least r3, and then proceed to extend it further downwards exactly as in the manner for a point 

event. 
(iii) r4 is closer to p' and r3 is closer to p: Determine the point r G (r3, r4) which is equidistant 

from p and p', and extend the intervals just below r3 and just above r4 to meet at r. 

See Figure 5. 

Some useful facts that are not hard to verify, and help bound the complexity of maintaining 

the status tree Tx, are collected in: 

Lemma 2   The following hold: 

1. The update procedure does indeed maintain Tx as well as the labels of its vertices correctly 

(i.e., according to conditions 1-4 for the labels B{ given at the beginning of the section). 

2. If the labels (p, c) and (p', c) were both associated with vertices of Tx, even at different 

times, then p = p', implying that the set of possible labels has cardinality 0(n + k). 

3. No two vertices of Tx at a given instant can have the same label. 

4. If a label B is associated with some vertex ofTx at time t', but is not associated with any 
vertex of Tx at a time t > t' (i.e., the vertex associated with B has been deleted by some 
intermediate event), then B can never again be associated with any vertex of Tx at a time 
t" > t. In other words, once a vertex with a given label is deleted that label cannot reappear. 

5. At each event, the update of Tx involves at most three insertion or relabeling operations. 

Proof. 
1: Follows from the description of the update procedures. 
2: If (p, c) is a label consider two cases: 

(a) c G S, in which case we must have p = c, and, 
(b) c G Ci, in which case p is a closest to c of the points of S from which there is an rc-path 

to c. However, after the choice of p is made, at the time of updating D at the left event when 

Lx lies on c, it is never changed. 
In either case, we see that (p, c) = (p', c)=> p = p1. 

3: This follows from condition 4 for the labels 5; given at the beginning of the section. 
4: Follows by examining each case where a deletion may occur in the update procedure. 

For example, consider the case of a point event at q that results in the deletion of the vertex, 
say a2 G Tx with label (p, c). This implies that the base c of the perpendicular from c to Lx(t) 

is closer to q than p. See Figure 6. 
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Figure 6: Illustration for the proof of Lemma 2. 

If, at some time t" > t, the label (p, c) reappears in Tx, say with vertex a4, then we must 
have that the base c of the perpendicular from c to Lx(t"), which passes through c, is closer to 
p than q. This is clearly not possible. 
5: Follows by a scrutiny of each case of the update procedure. 

Lemma 2 implies: 

Lemma 3 Tx is of size 0(n + k) throughout, and the total number of operations performed on 
Tx through the sweep is 0(n+ k). Therefore, the maintenance ofTx, which is height-balanced, 
through the sweep takes 0((n + k)log(n + k)) time. D 

At the end of the sweep we know, from the contents of D, for each point q £ S, a point p 
which is closest to q amongst points of 5, different from q, from which there is an x-path to q. 

We, therefore, have the following: 

Proposition 4 In O((n + k)\og(n + k)) time one can determine, following a sweep of the plane 
in the x direction, for each point q £ S, a point p which is closest to q amongst points of S, 
different from q, from which there is an x-path to q. 

In an exactly similar manner we can determine, within the same time bound, but following 
a sweep of the plane in the z direction (where z = -x, or ±y), for each point q e S, a point p 
which is closest to q amongst points of S, different from q, from which there is a z-path to q. □ 

Now, the following is easy to see: 

Observation 1 For any two points p,q £ S, there is either a shortest x-path or a shortest 
y-path from one ofp,q to the other. 

Consequently, a closest pair can be determined by examining, for each point q £ S, points 
of S, different from q, which are closest to q with distances being measured to q either along 
x-paths or y-paths. Applying Proposition 4 we have: 

Theorem 1 In 0((n + k) log(n + k)) time one can determine, following sweeps of the plane in 
the x and y directions, a closest pair amongst points of S. D 
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4 Finding Nearest Neighbors 

Determination of a nearest neighbor for each point q G S is also straight-forward using Propo- 

sition 4. Relevant is: 

Observation 2 For any point p £ S, the shortest path from p to a given point q G S is a z-path, 
where z is either ±x or ±y (these are, of course, not mutually exclusive possibilities). 

Proposition 4, therefore, gives: 

Theorem 2 In 0((n+ k)\og(n + k)) time one can determine, following sweeps of the plane in 

each of the four axes-parallel directions, a nearest neighbor for each point q G S. O 

5 Computing the Voronoi Diagram 

5.1     The Plan 

Denote the Voronoi diagram of a point set S in the presence of an obstacle set R of rectangles 
by VR(S). Due to the presence of obstacles, one needs to be careful about the structure of 
VR(S): it is a planar straight-line graph (PSLG) such that each face is either a rectangle of R, 
or corresponds to one point of S, say p, and is the locus of points (G G - UreRinterior(r)) that 
are as close to p as to any other point of S. Call the face corresponding to p the V-cell of p, and 
denote it VR(S,p). The boundary of VR(S,p), denoted BR(S,p), is a polygonal line, consisting 

of one or more connected components, each point of which lies either 

• on a bisector between p and some other q G S, or 

• on the boundary of an r G R. 

It may be observed that, due to the rectilinearity of the metric, each straight-line segment of a 
bisector is either horizontal, vertical, or inclined at 45° or 135° to the positive direction of the 
x-axis. See Figure 7 for illustration. To avoid cumbersome technicalities, we shall, in case of 
bisectors with non-zero area (see [12]) choose vertical lines as bisectors, and, further, make a 
standard assumption of "general position" such as no more than three points of S are co-circular. 

The following bounds the complexity of VR(S), where \R\ = n and \S\ = k: 

Lemma 4 The complexity ofVR(S) as a planar graph is 0(n + k). 

Proof. Consider the planar graph V whose vertex set consists of 
(a) Voronoi vertices (where three bisectors meet), and 
(b) vertices where a bisector meets a rectangle, 

and whose edge set consists of 
(a) pieces of rectangle boundaries, and 
(b) pieces of bisectors, 

that join such vertices, ignoring the individual segments that comprise each piece. 
See Figure 8(a) for the graph corresponding to the Voronoi diagram of Figure 7. 
Then V is a planar graph with vertices of degree three (and no higher by the assumption of 

general position), so by Euler's formula the complexity of V is linear in the number of its faces 
which is, of course, at most n + k. Note that V may have parallel edges and edges going^off to 
"infinity". Note also that rectangles that do not intersect bisectors are unrepresented in V (see 

Figure 8(b) and (c)). 
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Separator P 

Figure 7: The Voronoi diagram VR(S) for a set S of seven points and a set R of three rectangles. 
The shaded region is the V-face VR(S,p) of p. The separator (dashed line) splits S into 5"i and 
52, and the bisector between them is shown in bold. 
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points of these open segments 
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this endpoint has x-anchor both c & c\ 
i.e., the x-first path from p is not unique 

 -^K> föinte °f these open segments 
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unrepresented rectangle 

(c) 

Figure 8: (a) The planar graph V corresponding to the Voronoi diagram in the previous figure, 
(b) A Voronoi diagram showing the points of S U C (indicated in parenthesis) to which non-last 
edges of bisector pieces are charged, (c) The planar graph corresponding to the Voronoi diagram 
in („). 



Now, for the complexity of VR(S) we have to take into account, in addition to the complexity 

V: 
(1) the complexity of the unrepresented rectangles. This clearly totals 0(n). 

(2) the complexity of the pieces of rectangle boundaries that correspond to edges of type (a). 
Each such piece comprises at most 4 segments, so the total complexity is again 0(n). 

(3) the complexity of the pieces of bisectors that correspond to edges of type (b). This 

requires more careful analysis that we do next. 
Analysis of case (3): We must count all segments comprising those pieces of bisectors that 
correspond to edges of type (b). For this we shall describe an accounting scheme where each 

such segment is "charged" either to a point in S, a corner of a rectangle in R, or an edge of V. 
Consider an arbitrary edge of V of type (b). Say it corresponds to the piece b of the bisector 

between points p and q of S. Orient b arbitrarily and imagine proceeding along b, segment by 
segment, from the first segment to the last. Assume each segment to be open (i.e., it does not 
include its endpoints). For each segment e of b, except the last, denote its successor by e'. 

It is not hard to see that, as a consequence of the rectilinear geometry, exactly one of the 
following 8 cases must hold, where each case is obtained by replacing m by p or q, and z by ±x 

or ±y, in the following statement: 

The shortest path from m to each point of e(e') is a z-path and there is a unique 

2-first path to each point of e(e'), all with common z-anchor c(c'), where 

(a) either, c ^ c', 
(b) or, c = c', and the ray in the z direction from c intersects b at the endpoint 

between e and e'. 
(Note that the z-anchor of a segement may be a point of S or C, the set of corners 

of rectangles of R, and is unique as each segment is open.) 

In this case, charge the segment e to the z-anchor c. See Figure 8(b). 
It may also be seen that, conversely, if a point in S U C does, in fact, accumulate a charge in 

this case, then m is uniquely determined as the point of S closest to c. And, c can accumulate 
at most 2 charges in each case corresponding to z = ±x or ±y, from the two segments on 
either side of the endpoint where the ray in the z direction from c possibly intersects a bisector. 
Therefore, each point of Sli C may accumulate at most 8 charges under our accounting scheme. 
This proves that the number of segments that are not the last segments in the bisector pieces 

to which they belong is 0{n -f k).   
Finally, charge each last segment of a bisector piece to that edge of V to which the piece 

corresponds, so that each edge of V is charged once, proving that the number of such segments 

is also 0(n + k). 
Thus, the number of all segments comprising those pieces of bisectors that correspond to 

edges of type (b) is 0(n + k), and this concludes our analysis ofcase (3). 
Adding the complexities of cases (1), (2), and (3) to that of V proves the lemma. □ 

The overall plan for our Voronoi diagram algorithm is divide-and-conquer with an extension 

phase: 
Apply Proposition 3 to find an z(-i/)-path P such that the subsets of S and R to the left 

and right of P are Si and Ri, and S2 and R2, respectively. This guarantees that the number of 
rectangles in Ri and R2 is some constant fraction of the number of rectangles of R (note that 
we do not need any such assumption of "good" separation on Si and 5*2 for our algorithm to 
work). Recursively compute VRl(Si) and VR2(S2). Then, extend VRi(Si) to VR(5,), i - 1,2, 
and, finally, merge VR(S\) and VR(S2) 

with a Shamos-Hoey type scan [16] to obtain VR(S). 
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5.2    Extending a Diagram 

Let us consider the problem of extending VR1(5I) to VR(S{) (extending VR2(S2) to VR(S2) is 
exactly similar). If the closed region of the plane left (right) of P is denoted Px (P2), it is clear 
that VR(SI) n Px = VB,(5I) n Pi, as the shortest path joining two points in Px lies wholly in 
Pi, even considering all obstacles in R. Therefore, it remains to construct VR(SX) n P2, that is 
extend VRl(Si) right of P. 

Consider points p G Sx,q G P2. Clearly, q can be situated in either the north-west, north- 
east, or south-east quadrants as viewed from p, and, given the shape of P, in the first case there 
can be no vertical blockage between them, and in the third case there can be no horizontal 
blockage. Recalling Proposition 1 we have: 

Observation 3 A shortest path from a point p G S\ to a point q G P2 is either an x-path or a 
y-path. 

Therefore, to find a p G Si nearest to a given q G P2 (or, equivalently, the V-cell VR(Sx,p) 
containing q), we need only consider x-paths and y-paths from points of Si to q, suggesting, in 
fact, the geometric methods of Section 3. 

This leads to the definition and construction of z-diagrams, for z = ±x,±y. In particular, 
let us describe the x-diagram. 

Constructing the x-diagram of Si and R: Sweep the plane G, containing only Si and R, 
as in Section 3, in the x direction. As the line Lx sweeps through the plane, build, on the fly, a 
planar straight-line graph, called the x-diagram of Si with obstacle set R, and denoted XR(SI), 

such that each face of XR(SI) is either 

• a rectangle of R, or 

• corresponds to one point of Sx X (Si U C;), say (p,c) (where C\ is the set of corners of 
left edges of rectangles of R; see the discussion of labels at the beginning of Section 3), in 
which case it is the locus of those points q such that, amongst the points of Si from which 
there is an x-path to q, p is the nearest and c is the x-anchor of q w.r.t. p, or 

• the one remaining face, not of the preceding two types, that is the locus of those points 
q€ G - Ur<=R interior(r) that cannot be reached from any point of Si by an x-path. 

See Figure 9 for illustration. XR(SX) can be built, and represented as a doubly-connected-edge- 
list (DCEL, see [15]), by tracing the motion on the plane of points of the status tree Tx (lying 
on Lx, of course: imagine an inkspot at each such point), and, when the sweep-line Lx touches a 
point p G Si (or, c G <w) at time t, tracing the motion on the plane (along Lx(t)) as we proceed 
in either direction from p (or, possibly, c) to determine the extent of the new interval with label 
(p,p) (or, possibly, (p,c): imagine marking this new interval with a pen; see the discussion on 
updating the status tree in Section 3). 

Observation 4 Each face of XR(SX) is a rectilinear polygon, and the face of XR(SI) corre- 
sponding to (p, c) G Si X (Si U C(), called the x-cell of (p, c) and denoted XR(SI, (p, c)), contains 
c on its boundary. XR(SX) is, of course, a planar graph analogous to a Voronoi diagram VR(SI), 

but where distances are measured only along x-paths and that, further, has been refined up to 
anchors. 

Assume the number of points in Si, i = 1,2, is k{. The following bounds the complexity of 
the x-diagram, as well as that of computing it: 
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Figure 9: The x-diagram XR(Si), for Si - {pi,P2,P3,P4,Ps,Pe,P7} and R = 
{ri,r2,r3,r4,r5,r6, r7}. The shaded region on the left consists of points that cannot be 
reached from points of Si by z-paths, while the shaded region in the center, for example, is 



Lemma 5 The complexity of XR(Si) as a planar graph is 0(n+kt), and the time to compute 
it is 0((n + fci)log(n + &i)). 

Proof. The complexity of XR(Si) as a planar graph follows from standard geometric arguments, 
while the time to compute it is dominated by the time to sweep the plane with Lx, which is 
0((n + ki)log(n + ki)) from Lemma 3. a 

This completes a description of constructing the x-diagram XR(Si). 

One can define and construct, in an exactly similar manner, the ^-diagrams ZR(Si), for 
z = -x,±y (Z = -X,±Y, respectively). In particular, construct the y-diagram YR(SI). 

Now note that, by Observation 3, XR(S1) n P2 and YR(Si) D P2 together contain essentially 
all the proximity information of VR(Si)C\P2. How then do we use these two diagram to explicitly 
construct VR(Si) D P2? Our plan is to scan the plane upwards with a horizontal sweep-line Ly, 
starting at a position sufficiently far south and constructing the part of VR(Si) D P2 beneath Ly 

as we proceed. 
Before describing this construction, we record certain relevant geometric features of VR(Si)D 

P2- 

Proposition 5   The following hold: 

1. Each edge e ofVR(Si) f~l P2 is a straight-line segment that is either horizontal, vertical, or 
inclined at 45° to the positive direction of the x-axis. In particular, no edge ofVR{S\) 0 P2 

is inclined at 135° to the positive direction of the x-axis. 

2. Each edge e ofVR(S\) n P2 is one of the following five mutually exclusive types: 

• P-edge: e is part of an edge of P. 

• R-edge: e is part of an edge of a rectangle of R within P2. 

• XY-edge: e is part of the bisector between two points p, q 6 Si, such that the shortest 
path to any point of e from p is an x-path and the shortest path to any point of e from 
q is a y-path. 

• XX-edge: e is part of the bisector between two points p,q € S\, such that e is not of 
type XY and the shortest paths to any point of e from both p and q are x-paths. 

• YY-edge: e is part of the bisector between two points p,q € Si, such that e is not of 
type XY and the shortest paths to any point of e from both p and q are y-paths. 

3. An inclined edge is always an XY-edge, a vertical edge may be either an XY- or YY-edge, 
while a horizontal edge may be either an XY- or XX-edge. 

4. Each vertex v ofVR(Si) n P2 is one of the following six mutually exclusive types: 

• P-vertex: v is a corner of P. 

• R-vertex: v is a corner of a rectangle of R within P2. 

• B-vertex: v is a point at which the bisector between two points of Si turns (from one 
straight-line segment to another) within P2. 

• BP-vertex: v is the intersection with P of the bisector between two points of Si. 

• B R-vertex: v is the intersection with an edge of a rectangle of R, within P2, of the 
bisector between two points of Si. 
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• V-vertex: v is the intersection of three bisectors within P2 (i.e., a Voronoi vertex). 

Proof. The classification of the edges and vertices of VR(Si) D P2 (items 2 and 4) follows 
immediately from the definition of VR(5I) and Observation 3. (See Figure 10 for illustration.) 

For the proof of item 1, observe that, given two points pi and p2 such that a segment of the 
bisector between them is inclined at 135° to the positive direction of the x-axis, and given a 
subsegment d ofthat inclined segment, one of px and p2 must he in the upper right "quadrant" 
determined by d (refer Figure 11(a)). Now, suppose that there exists an edge e of VR(SI) D P2 

inclined at 135° to the positive direction of the z-axis. This would then imply (refer Figure 11(b)) 
that a point of 5i lies to the right of P, which is impossible. 

For item 3, we can use an argument similar to the one given above to show that an XX-edge 
can run only horizontally, and a y Y-edge only vertically. We leave the details to the reader. □ 

Observe that at any instant through the intended sweep, when Ly lies along Ly(t), Ly(t) n 
(VR(5I) n P2) consists of zero or more horizontal edges of VR(5I) n P2, and the intersections of 
some vertical and inclined edges of VR(SI) D P2 with Ly(t) (these intersections may, in fact, be 
vertices of VR(Si) D P2). We keep a description of Ly(t) f) (VR(SI) n P2) as a sorted sequence 
{xi : i = 0,...} of points stored in records of a height-balanced status tree Ty. Each z; is either 
the endpoint of a horizontal edge of VR(SI) fl P2, or the intersection of a vertical or inclined 
edge of VR(S1) D P2 with Ly(t), which information is stored at the record for x,- (of course, 

x0 = P fl Ly(t)). 
Our plan is to maintain Ty (at least implicitly, but not necessarily exactly, which we justify 

later) through the sweep. This will allow us to build VR(SI) n P2, and represent it as a DCEL, 
on the fly. 

Initialize the event point schedule E by including in it the following points sorted by in- 
coordinate: 

1. P-vertices of VR(S\) n P2 that are left endpoints of horizontal edges of P. 

2. Ä-vertices of VR(Si) D P2 that are left endpoints of horizontal edges of r £ R2. 

3. BP-vertices of VR(Si) n P2. 

4. PP-vertices of VR(S\) n P2 that he on upper or right edges of rectangles of R2. 

Points of the third and fourth type are called start vertices as they mark "starting" endpoints 
for bisectors in VR(S\) fl P2 . 

It should be remarked that new event points, either so-called LE-vextices (to be defined) or 
F-vertices, will be added to E as the sweep proceeds. F-vertices are also start vertices. 

We claim: 

Lemma 6 E can be initialized in 0((n + ki) log(n + fci)) time, and within that same time one 
can determine, for each start vertex v of E, the direction and type of the edge, say e, that starts 
at that vertex, as well as the identity of the bisector of which e is a part (i.e., the two points of 
Si that this bisector, in fact, bisects). 

Proof. It is trivial to include points of the first two types. Points of the third type can be 
determined as the intersections of edges of VR^SI) (which has been recursively computed) with 
P. 

For points of the fourth type, we claim that, in fact, all 5Ä-vertices of VR(S{) n P2 can be 
determined in 0((n + fci)log(n + kx)) time by the following steps: 
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R-vertex 

separator P 

Figure 10: The hollow circles are the vertices of VR(SI)C\P2, and its edges include the dashed lines 
along the separator P as well as the solid lines to the right of P (for S\ = {pi,P2,P3,P4,Ps,P6,P7} 
and R = {r\,r2l r^, r±, r*,, re, rj} of Figure 9). Some of the vertices and edges have been labeled 
according to Proposition 5. 
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H 

(a) (b) 

Figure 11: Illustration for the proof of Proposition 5: (a) The disposition of two points whose 
bisector has a segment inclined at 135° to the positive direction of the z-axis, and (b) part of 
such a bisector to the right of P. 

(a) Preprocess the planar graphs XR(SI) and YR(SI), for logarithmic time point location, in 
time 0{(n + ki)log(n + fci)) (see [15]). 

(b) Locate the lower left corner of each rectangle of R2 in both graphs XR(S\) and YR(S\) 
in total time O(nlog(n + k\)). 

(c) Traverse clockwise the boundary of each r G P2, starting from its lower left corner, while 
tracking, at the same time, the nearest points of Si and S2. For this, by Observation 3, we sim- 
ply need to determine the successive z-cells and j/-cells that are crossed through the traversal. 
And, during the traversal, a point v on the boundary of r that is nearest to two distinct points 
of Si is marked as a BR-vertex. Q 

Before describing the rather complex procedure for updating Ty at each event point, let us 
try to provide the guiding geometric insight which is relatively simple. 

View Vß(Si) n P2 as a "set of (connected) bisector-components", each bisector-component 
starting at either a 5P-vertex or a PP-vertex (on the upper or right edge of a rectangle of 
R), and traveling monotonically in the upwards direction either to "infinity", or ending at a 
V-vertex or on the lower or left edge of a rectangle. This view is motivated by the first item of 
Proposition 5, and justifies the inclusion of the third and fourth types of points in the schedule 
E (of course, points of the first and second types are included in E as they mark the predictable 
events of including edges of P and rectangles of R into VR(SI) n P2). 

Now, a YY-bisector-component (i.e., a bisector-component consisting of YY-edges: it is not 
hard to see that if one edge of a bisector component is of type YY (XY, XX), then every edge 
of that bisector-component is of type YY (XY, XX)) travels vertically upwards from its start 
vertex, either indefinitely, or till it ends either at a V-vertex, or on the lower edge of a rectangle 
(the second case may be viewed as the YY-bisector-component being struck from the left by a 
horizontal edge of VR(S\) D P2). 

An XX-bisector-component travels horizontally rightwards from its start vertex, either in- 
definitely, or till it ends at a Y-vertex, or on the left edge of a rectangle (the second case may 
be viewed as the XX-bisector-component striking a vertical edge of VR(SI) D P2). 

With an XY-bisector-component we must be more careful as it may make turns while trav- 
eling from its start vertex. Even so, the XY-bisector-component may be tracked with the help 
of the x- and y-diagrams, for within a fixed z-cell and a fixed y-ceH (where the x-anchors and 
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y-anchors of points w.r.t. nearest points in Si do not change) the bisector-component makes 
at most two turns and its path may be determined easily. Thus, we track the XY-bisector- 
component first from its start vertex v, through the intersection of the x-cell and y-cell to which 
v belongs, to the point, say v\, where it first leaves one of these two cells to enter a new x- 
or y-cell. Note that the XY-bisector-component must make a turn at vi, and we repeat the 
tracking procedure starting from vx, ..., either indefinitely, or till it ends either at a V-vertex 
or on the lower or left edge of a rectangle. 

With this insight in mind, we shall describe the detailed procedure for updating Ty. However, 
before beginning the procedure we need a preprocessing stage: 

Preprocess each a;-cell of XR(SI) and y-cell of YR(SI) for 0(log(n + fcx))-time ray-shooting 
(i.e., to determine where a ray fired in some given direction from some given point in that cell 
will first strike the boundary of the cell) in total 0(n + ki) time (see [9] for linear-time prepro- 
cessing for ray-shooting). Further, preprocess the horizontal edges of both P and rectangles of 
P, again in total 0(n + ki) time, for O(log(n + fc1))-time vertical ray-shooting (i.e., determining 
which of these horizontal edges, if any, will be struck by a vertical ray fired from some given 
point on the plane, see the computation of vertical adjacency maps [15, p. 349]). 

Procedure for updating Ty: Initially, when Ly{t) lies south of any point in the schedule 
E, Ty(t) contains only one point, the intersection of Ly(t) with the lowest vertical edge of P. 
Next, start scanning upwards with Ly, stopping at successive event points of E to update Ty as 
follows: 

1. At a P-vertex v, v becomes the new left endpoint of the intersection Ly(t) C\ (VR(S\) l~l Pj). 
Insert v "appropriately" into Ty(t) (this includes recording the horizontal and vertical 
edges of P in VR(SI) n P2 that start at v), and delete the previous leftmost point, say vt, 
of Ty (this represents that a vertical edge of VR(SI) n P?, ends at v\). 

2. At an P-vertex that is on the lower edge of an r G R, appropriately insert both endpoints 
of that lower edge into Ty(t) (the lower edge itself, as well as the vertical edges starting at 
either endpoint of that edge are parts of VR(SI) f"l P2). 

At an P-vertex that is on the upper edge of an r G P, appropriately delete both endpoints 
of that edge from Ty(t) (they both mark endpoints of verticals edges of VR(SI) ("1 P2, while 
the horizontal edge joining them is part of VR(SI) n P2). 

3. At a start vertex v (i.e., either a BP-, BR-, or F-vertex), insert it into Ty(t) as the starting 
endpoint of an edge e of VR(SI) D P2, and also record the direction and type of e, as well 
as the identity of the bisector of which e is a part (see Lemma 6). 

If e is a YY-edge, record the point, say vx (possibly +00), at which the ray along e (i.e., 
vertically upwards) first hits a rectangle of P, as the "likely endpoint" of e (preprocessing 
for vertical ray-shooting allows us to compute vx in time O(log(n + k\))), by inserting v\ 
appropriately into E as an L P-vertex. 

If e is an XX-edge, it is horizontal and, in fact, lies wholly along Ly(t) and ends at the 
next vertex (to the right), say vx, on Ty(t) which must correspond either (a) to a vertical 
edge lying on the left side a rectangle of r G P, or (b) a vertical edge that is part of 
some bisector. In both cases the vertical edge ends at v\ (so, also remove the iP-vertex 
corresponding to this vertical edge from E). In case (a), a "new" vertical edge continues 
up the left side of r starting from v\. In case (b), insert v\ into E as a new V-vertex 
which is the start of an XY-edge e' that is part of a bisector whose identity is also trivially 
determined. 
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If e is an XY-edge, extend the bisector-component b of which it is a part to the point, 
say vi, where b first strikes the boundary of either the z-cell or t/-cell to which v belongs 
(determining vx takes time 0(log(ra + h)) as we need to follow the bisector through at 
most two turns and, possibly, perform ray-shooting). Insert v\ into E as an LE-vertex, 
recording it as the "likely endpoint" of b. 

4. At an I^-vertex v\ that lies on the edge (either left or lower) of a rectangle, mark v\ as 
the actual endpoint of the corresponding edge of a bisector-component of VR(SI)C\ P2. At 
an Z-^-vertex v\ where an XY-edge strikes the boundary of either an x-cell or a y-cell, 
again mark v\ as the endpoint of the corresponding edge of a bisector-component b of 
VR(SI) n P2. It is, in fact, a turn point of b. Therefore, as in the last paragraph of Step 3, 
further extend b to the point, say v2, where it next strikes the boundary of either the z-cell 
or j/-cell to which vi belongs (again, determining v2 takes time 0(log(n + &i))). Insert v2 

into E as an i^-vertex, recording it as the "likely endpoint" of b. 

Comment. The points in Ty(t) may not exactly represent the intersections, at each instant t, of 
Ly(t) with VR(SI) n P2, because of the inclined edges of VR(SI) D P2. However, this does not 
compromise either the procedure for updating Ty or constructing the DCEL for VR(SI) PI P2, 
as through the sweep we do succeed in locating both endpoints of every edge of VR(SI) D P2, 
i.e., we do not miss any intersections of edges even though they may be traveling at an incline 
between event points (in fact, each intersection will be discovered as an event point). 

It may be checked that there will be at most 0(n + kt) updates to Ty at a cost of 0(log(rc + 
fci)) per update (the easiest way to count updates is to see the correspondence between each 
update and a vertex of VR(SI) ("1 P2). The only relevant non-trivial observation here is that each 
O(log(n + ki)) cost to track an XY-bisector-component b from one LE-vertex v to another may 
be "charged" to v (note that b must turn at v, so that v is, indeed, a vertex of VR(SI) D P2), 
implying that the total cost of tracking all XY-bisector-components is 0((n+ki) log(n+&i)). (A 
simple intuition, in fact, a motivation for the entire procedure, is that, to trace an XX- or YY- 
bisector-component we "pay" only a constant amount, while, for an XY-bisector-component, 
we "pay" only when it turns.) We have, therefore: 

Proposition 6  We can extend VRt(Si) to VR(5,-), i = 1,2, in 0((n + k)\og(n+ k)) time.      D 

5.3    Merging Two Diagrams 

Now, consider the problem of finding VR(S), given VR(SI) and VR(52). We intend a Shamos- 
Hoey type scan ([16], see also [15]) to compute the bisector of S\ and 6'2, denoted b(Si,S2), 
consisting of those points q (G G — Ur£R interior(r)), such that if p\ and p2 axe the nearest to 
q amongst points of 5i and 52, resp., then d(q,pi) = <i(g,p2). But first: 

Lemma 7  The following hold: 

1. The bisector b(S\,S2) is a subgraph of VR(S) and, therefore, has complexity 0{n + k). 

2. It consists of components, each a polygonal line that, in either direction, is either unbounded 
or ends on the boundary of an r G R- 

3. It divides G — Ur^Rr into two (not necessarily connected) subsets b~(S\, S2) and b+(Si, S2) 
to its left and right, resp., w.r.t. to some total orientation. 

4- 

VR(S) = (VR(S1)nb-(Sl,S2)) U b(S1,S2) \J(VR(S2)r\b+(S1,S2)) U Ureflr. 
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Proof. Follows by standard geometric arguments, but see Figure 7. D 

For the computation of b(S\, S2) it is observed that: 
The bisector b(Sx, S2) may be found by a scan exactly similar to the Shamos-Hoey type scan 

for an Euclidean space without obstacles, except 
(a) that b(Si, S2) may have turns even within one given V-ceU because of the nature of L\- 

bisectors, and because it passes through regions with different anchors w.r.t. the closest points 

in S\ or 52, 
(b) that such turns may be found by simultaneously tracking b{S\,S%) through the z- 

diagrams ZR(Si) (Z - ±X,±Y, i = 1,2), as the 2-cells to which a point p 6 b(Sx,S2) belongs 
determine its anchors w.r.t. the closest points in Si and 52, and, therefore, allow 0(log(n + k)) 
time determination of the straight segment of b(Si, S2) on which p lies; of course, this requires 
0((n + k)\og(n + k)) time preprocessing of the z-diagrams, see the analogous procedure for 
tracking an XY-bisector-component in the procedure for updating Ty in the previous section, 

and, 
(c) that the number of such turns is 0{n-\-k). 
We have, therefore: 

Proposition 7 We can merge VR(SI) and VR(S2) to obtain VR(S) in 0({n + k)\og(n + k)) 
time. 

5.4    Putting Everything Together 

We now have all the pieces required to execute the plan, described in Section 5.1, for an algorithm 
computing the Voronoi diagram: 

Given the problem of computing the Voronoi diagram defined by 5 and R, where \S\ = k and 
|£| = n, we first subdivide (using Proposition 3) into two subproblems defined by Si and Äi, 
and S2 and R2, resp., where |5i| = ku |Ei| = na, |S2| = k2, \R2\ = n2, and nx,n2 > \n. This 
subdivision requires 0((n+k) log n) time, as it takes 0(nlog n) time to build the the subdividing 
path P and, subsequently, O(logra) time per element of S U R to determine on which side of P 
it lies by a binary search over the 0(n)-sized P. 

After recursively finding the diagrams that solve these two subproblems, we extend and then 
merge these two diagrams (using Propositions 6 and 7, resp.) to obtain a solution to the original 
problem. These two phases require a total time of 0((n + fc)log(n + k)). 

Observing that all the base cases of the recursion can be solved in a total time of 0(k\ogk) 
(each base case is, in fact, defined by some number, say kly of points of 5 and zero or one 
rectangles of R, and can be solved in 0(A;ilogA;i) time by a modification of the algorithm of 
[12]), it may be checked that a recurrence bounds the running time of the entire algorithm to 
0((n + k)log(n + fc)logn). 

We have, therefore: 

Theorem 3 In 0((n + k)log(n + k)logn) time one can determine the Voronoi diagram of S.O 

6     Computing a Minimal Spanning Tree 

The problem of computing a minimal spanning tree of 5 (in the presence of the obstacle set R) 
may, in fact, be reduced in linear time to that of computing the Voronoi diagram VR(5). The 
relevant observation is (see [15] for the insight): 
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Observation 5 Computing a minimal spanning tree of S is equivalent to computing the minimal 
spanning tree of the dual graph of VR(S), where the weight of an edge joining the two vertices 
that are dual to the faces VR(S,p) and VR(S,q), resp., ofVR(S), is d(p,q). 

Since the dual graph of VR(S) is a planar graph of size 0(n + k) (and may also be determined 
from VR(S) in time 0(n + £)), the algorithm of Cheriton-Tarjan [4] finds a minimal spanning 
tree in 0(n + k) time. This completes the linear time reduction of the minimal spanning tree 
problem to the Voronoi diagram problem, and gives: 

Theorem 4 In 0({n + Jfc)log(n + fc)logn) time one can determine a minimal spanning tree of 
c a 

7    Conclusions 

For each of the four problems (a)-(d) described in the introduction, reduction from the element 
uniqueness problem f7] provides an fi(fclog k) time lower bound, while an fi(n + k) time lower 
bound holds trivially because of the input size. This gives the ft(n + klogk) time lower bound 
which, to our knowledge, is the best available, and shows that each of our four algorithms is 
near-optimal. Whether they can be improved is, of course, open. 

However, it seems unlikely that the time will be lowered below 0((n+k) log(n+A;)) as, in some 
sense, each of the four problems has an intrinsic complexity of ü((n + k) log(n + k)): for, if a part 
of each problem were to determine the validity of the input sets (i.e., all rectangles are disjoint 
and all points lie outside the rectangles) then, indeed, a reduction from element uniqueness (by 
considering point-sized rectangles) implies an ft((n + fc)log(ra + k)) time complexity. 

We mention that one apparently feasible approach to obtaining 0((n + fc)log(n + k)) time 
complexity - avoid divide-and-conquer by first computing all four z-diagrams ZR(S), Z = 
±X,±Y, and then construct the entire Voronoi diagram VR(S) with one plane-sweep similar 
to that in Section 5.2 - runs into difficulties that we believe cannot be overcome in 0((ra + 
Jb)log(n-+ k)) time. For, recall that, to successfully complete the sweep of Section 5.2 in 
0{{n + ki)log(n + fci)) time, it was crucial that an XX- {YY-, resp.) bisect or-component 
simply runs horizontally (vertically, resp.) until either it hits a rectangle or is hit from below 
(left, resp.) by another Voronoi edge. Hence, processing (at 0(1) cost) for a bisector-component 
when it enters a new x- or y-ceU was necessary only if it was an XY-bisector-component (and 
an XY-bisector-component does, in fact, make a turn at every such entrance, so "justifying" 
the 0(1) cost). However, it seems an analogous property does not hold if we try to construct 
the entire Voronoi diagram in a single sweep using the four z-diagrams, and it is not clear how 
to avoid expending 0(1) processing cost each time any bisector-component enters a new x- or 
y-cell. 

Other directions to consider include extending or modifying the techniques described here 
to deal with more general classes of obstacles and different metrics. For example, we believe 
that similar techniques will work with convex polygonal obstacles, as well as "fixed orientation 
metrics" [17]. 
Acknowledgement: We thank the anonymous referees for several suggestions that improved 
the paper, and for pointing out a critical reference. 
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